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Stabiltty of Vortex Trails
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It is established that both the magnitude and the direction of
the velocity of motion of infinite vortex systems (trails relstive to
fluid flow) which meets an obstacle producing tralls depend on the
mutual arrangsment of boti vortex chains., Actuslly, we will dart from
the same genersal formulas which gave us the complex velocity of each
of the vortlces of the two parallel vortex cheins with ejquidistant
vortices for both chains (distence 21) ant with equal and opposite

circulation P for each chainj namely, from

g_g) =g cot T (a," - 35%) (1)
A8/ gmgo! 41 gl

where 2a' , z" represent the affixes of the vortices corresponding to
the upper znd lower cheins and the index o relates to some initial
vortex, Denoting by &Zh the width of the atreet and puttdng

¥4

o" = 3,' -~ Rd - 2ih , we obtain the following three putrs of different

componemts of the veloclty of & moving trail+

Uy = _cotxW , v, =0; Ugz | tanhxT, y, =0 (2)
3T

o\

U= Dtanhvil + tan® D7 5 v =~ [ tanT1 - tanh®¥r _ (3)
4« tan® T+ taoh®KF 4l .o AT+ tunh® y

From formuls (2) 4t is evident that as e consequence of Vg = 0,

Vz. = 0, symmetrical and stagrered trells move in the direction of the

basic flow; asymmetric trails in view of V, # 0 move obliguely with
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respect to the basic flow. This does not altogether mean that the
asymsetric system of vortices in both vortex chains changes the dir-
ection of its aals with respect % the direction of the basic streams
but means only that such & trail moves parallel to itself, moving by
degrees from the axis of symmetry of & streaalimed body with which
the axes of both the symmetric end stagycred trails in all the time
of their existence colncldé.

1f vortices of small displucement (of first or second but not
fourth or much higher order) are sdded and the stability of the vortex
system is studied then there is obtuined, as is known, thet the sym-
metric treil is determined unstable, the staggzered may be steble if the

Karman condition

sinh¥W= 1, K= h/{ x 0,261 (¢
is fulfilled |
and aoymmetrds troils AF the move peneral condition (1)
sk YT » gig AT o

ie Prilled \which guarantess the existence of obligue flows of trails,
18 en occurrence which is not observed in nature and not stated for
laboretory tests.

¥e have in view tha{ theoretic investigation of the guestion of the
motion anc stepility of vortex treils assunies, on the one hand, an
idesl fluid and, on the other h:nd, comsiders infinilte vortex trails
not connected withaan obstacle wnich produces vortices in such time
&8 these real csuses roduce observable steggered vortex trails which
flow straight, But if it is takem into account that the water in
which freyuently is observed vortex trails is &n slmost idesl fluid and
that vortex systems are studied far from the obstacle tuem all we be-
lieve vwe may give a purely theoretical explanetion of the guestiong

What produces the tendency of steble trails to appear exclusively in
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staggered but not in asymmetric order and to flow not slanting but
straignt?

Having in view taat a very similar study by Kochin [2] in gen-
eral excludes the stsble stato of staggered sreils ( but in one of the
first of our reports [3] we showed that this relates to asymmetric
tralls) the stalement of the above-mentionnsd quesiion generally would
be ximlesy Lf the result which gives us the theory i1s not in satis-
fretory accorcence with experimentel data. On one hend, these theor-
etical results now are used to conutruct s thosry of vortex drag [4,5]
wnich emanstes from conditién (4) guarantéaing the exlstence of
"lesst unstable vortex formetion®™, On the other hand, it follows not
to forget thaet the mechznism of formation of the vortex system from &
cylinder is such that the vortex trall must be, if not completell, at
lesast alm:st symmetrical, then as ws stete that 1t is quickly made
staggered and not disintegrated., We show that staggered arrangement
is the lest stage of an infinitely-many slso-steble intermediate &-
symmetric trails. In other words, the latter, streaming obliquely,
ig stabilizec end finelly arranged in the form of staggered trails
streaming straightly.

Comsidering formulas (2) sand (3) ecrlier [1] , we established
that for parumeters A and K which satisfy the stebiiity cunditions
of staggered snd asymmetric tralls, therekx is the preperty:

\%‘A)\uﬂ?‘\ which shows that syumetric have more velocity, a-
symmetric traills have less velocilty but staggerec iballs nave smaller

velocitys It is easy to deduce thet the asymmetric stable traild are
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always narrower than steble staggered trails. These properties
ghow that generalized asymmetric trails have, actually, a character
intermediste between symmetric and staggered. All these facts also
are close to observable test methods, That is whyywe proceed from
such a displecement lew which leads to stable stoggered trails in
unsymmetrical arrsngement therefore to obligue flow system and we
will seek the peths of separate vortices.

Oblique stresming vortex trails we already obtained for any
"group® displacement (in each of two vortex chains is triced an inf-
inite numbei of sections such that in every s ection is conteined n
?ortices, the displacement of which in esch succeeding section is re-
peated)s For n =2 Jalternste displ:cement) we deduced the xa
flow law (1) [SJ. Thls effect appeers in a more obvious way when
n = 1 (1dentical displacements) in any case for the secondary com-

ponent of velooity we fing the formula [6]
v -2
v= T ' - v/ cosh 1l
41 i;5 %o Z ° X

But in the consliered psrbiculer case of group displecements
for wnlch we started frow treils with staggered srrangement of vor-
tices, the fuitlal srrengement of the vortices wes sucih that they
always representea non-symretric arrangevents which produced, as we
saw, V# 0. (On these asymmetric arrangenents both Hozenhead [7]
and Glauert [8] expressed the opinion that they may not be stable,
by virtue of the fact thet the velocity component perpenalcu.ar to
thue vartex chaln changes tie mutvuel vortex arrengement, l.e, destroys

the traeil, which does not appear the theorectical fact since tne asym-
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metric trsil, «s we showed [1,5‘] may also be stable).

Thus, we willi procedd from some staggered arrangenent of the
vortices and trace taelr path sosuwing as & law for the vortex dis-
plucement such idemtlcal dicplacemente wnich, on the one hsnd, must
move the¢ vortex chuins relative to one another but, on the other hand,
eipsnd (conbraci) wo vortex trails. Our goal is to find thne law
»hich controls the brajectory ot the vortices im thelir wotion rels~

vive Lo tae siugyered srraungeuwenis whlel 1s not what ls knownm as a-

In tis same way, bthe assumea lew for ths displacemént of vor-
tices now aes the foruw
2,7 = 4t - | ¥ 28- 2ih x 210 (6)
where ? (the shift of tne vortex cuein), 7 \expunsion or contrection
correspondingly) of the tralls alresdy denote varisble quantities,
Then (6) mey be written In tue fomm
Bg" = gt - 21{(% /1) + /1 ¥ ‘Z/z)f (N
or after substituting %/pf, 7'/1 =x, anc also %+ < =(<P
¥ 'X = \P in the iomm
g = ut - 2 (Y + 1Y) (8)
Using formule (1), or vhat is the ssme, formule (3) xhak
which sre valid for en acsymmeiric arrangement obteined from the sym-
metric for whibh it i3 neceseery to replace Lhe perancters A, K by

Le ’ \P we obteln the differentisl equetions
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= [ tanbYPr 1+ tan® QT
4l® tan® QT + tanb® W

FaW =-D tenyp L - tenn® YT

LY tan®T + tanb® YT

s

9-‘9-
[ 44

(9)

The trajectory, according to which the separate vortices move,
we obtain after some tramsformation &nd eliminatlion of dt from
the eqguation

aV¥ = sin@cos Prr (10)
dc? sinhV¥lecosh \Yr

which hes tue integral

sinn® YT = sin® QT + ¢ (11)
To determine the constant of integration (¢ we consider, on
the one hand, that for t =0, go = 0, Plo = 0, from which we obtein
¥ =& \Poz' A3 on the other hand, since the initial arrangement
was gtable according to Karman we take intc account condition (4).
#e then obtain C = Q.
Thus, we obtain the solution of (10) im the form
sloh® Pl = sia® AT | (12)
from which, assuming [ = 1 , for tae trajectory of the separéte vor-
tices we find thie equation
*th-%lnwm + coa?r" (18)
since ¢ = ¢+ ¥ /1, then equation (1), naturally becomes
sinh VT = cosST (14)
which colncides with the stability condition (5) for ssymmetric
tralls in which condition it is necessary tw put A = d/z +d=h+ /\A

from which we obtain, amelogous to (14), that if we start from a
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staggered arrangement and it reduces to an asymmetric then the stab-
i1lity condition transforms to
sinh W7 = cos il

Thus we sstablished that for simulteneous movement of vortex
cheins and contractions of tralls the law which controls the traject-
ory of separate vortices is such that they describe stable trejectories,
This means that all intermediste asymmectricel trells are steble which
permit, without & breax, treils to arrange thelr vortices in an ultimate
staggered order,

with this stebiligation, & vortex system passing through an infinlte
manifold of asymmetric configuragions which slwarys are slready ctaggered
brails, decresses its velocity, and becoming possibly more broad, starts
to move with the minimum velocity (R). This seme broad trail corres-
ponds to experimental fact that the observed stagpered trall has a con-
siderably larger width than the greatest trensverse section of the
streamline body., The same epplies to the very slow flow of vortex trails
far from the body., Near the body the tralls undergo some oscillatioms
both in respect to the mutual distance of the two vortex chains and in
respect o the arrangement of the chnsins with respect to each other.

Stabilizetion of vortex trails is c:binued briefly; in that time
the effect of oblijue flow mey be discovered only in the form of small
displacements of the treil exls reletive to the axis of v ymmetry of the
bady. A8 we showed, an & obstructing body also dows ists effect as &

consejuence ak »xf af thls dlsplacenent beyond the body is hardly roted,
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